Real-time Accurate Runway Detection based on Airborne Multi-sensors Fusion

نویسندگان

  • Lei Zhang
  • Yue Cheng
  • Zhengjun Zhai
چکیده

Existing methods of runway detection are more focused on image processing for remote sensing images based on computer vision techniques. However, these algorithms are too complicated and time-consuming to meet the demand for real-time airborne application. This paper proposes a novel runway detection method based on airborne multi-sensors data fusion which works in a coarse-to-fine hierarchical architecture. At the coarse layer, a vision projection model from world coordinate system to image coordinate system is built by fusing airborne navigation data and forward-looking sensing images, then a runway region of interest (ROI) is extracted from a whole image by the model. Furthermore, EDLines which is a real-time line segments detector is applied to extract straight line segments from ROI at the fine layer, and fragmented line segments generated by EDLines are linked into two long runway lines. Finally, some unique runway features (e.g. vanishing point and runway direction) are used to recognise airport runway. The proposed method is tested on an image dataset provided by a flight simulation system. The experimental results show that the method has advantages in terms of speed, recognition rate and false alarm rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MHIDCA: Multi Level Hybrid Intrusion Detection and Continuous Authentication for MANET Security

Mobile ad-hoc networks have attracted a great deal of attentions over the past few years. Considering their applications, the security issue has a great significance in them. Security scheme utilization that includes prevention and detection has the worth of consideration. In this paper, a method is presented that includes a multi-level security scheme to identify intrusion by sensors and authe...

متن کامل

An efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network

Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...

متن کامل

A Real-time Motion Tracking Wireless System for Upper Limb Exosuit Based on Inertial Measurement Units and Flex Sensors (TECHNICAL NOTE)

This paper puts forward a real-time angular tracking (motion capture) system for a low cost upper limb exosuit based on sensor fusion; which is integrated by an elastic sleeve-mitten, two inertial measurement units (IMU), two flex sensors and a wireless communication system. The device can accurately detect the angular position of the shoulder (flexion-extension, abduction-adduction and interna...

متن کامل

Detection of Obstacles in Monocular Image Sequences

The ability to detect and locate runways/taxiways and obstacles in images captured using on-board sensors is an essential first step in the automation of low-altitude flight, landing, takeoff, and taxiing phase of aircraft navigation. Automation of these functions under different weather and lighting situations, can be facilitated by using sensors of different modalities. An aircraft-based Synt...

متن کامل

DAMAGE DETECTION OF BRIDGE STRUCTURES IN TIME DOMAIN VIA ENHANCED COLLIDING BODIES OPTIMIZATION

In  this  paper,  a  method  is  presented  for  damage  detection  of  bridges  using  the  Enhanced Colliding Bodies Optimization (ECBO)  utilizing time-domain responses. The finite element modeling of the structure is based on  the equation of motion under the moving load, and the flexural stiffness of the structure is determined by the acceleration responses obtained via sensors placed in d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017